

Annual SANTA FE SPRINGS Water Quality Report 2024

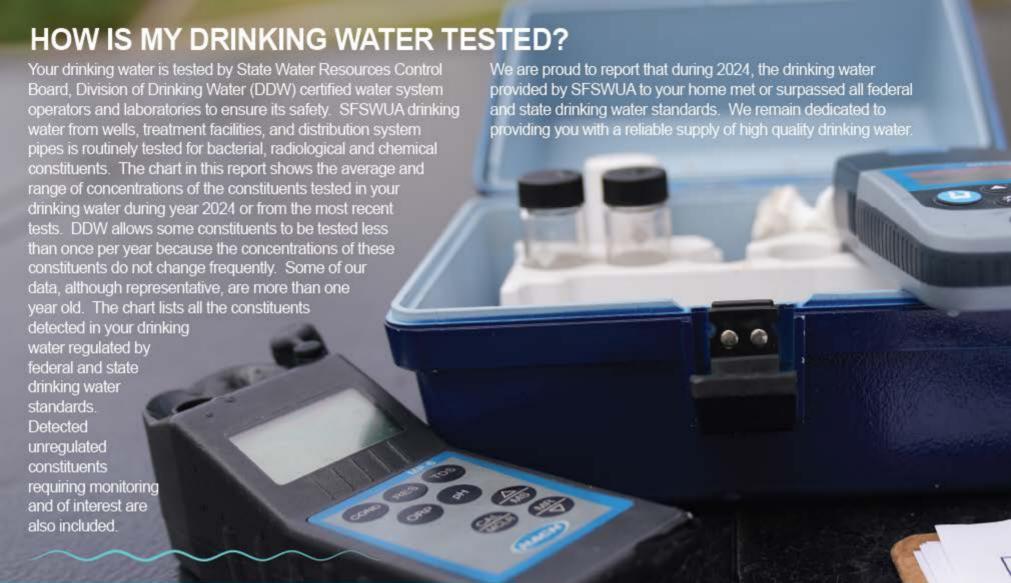
SANTA FE SPRINGS WATER UTILITY AUTHORITY (SFSWUA)

The Santa Fe Springs Water Utility Authority (SFSWUA) is pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act. This report is a snapshot of the tap water quality that we provided to our customers last year. Included are details about where your water comes from, how it is tested, what is in it, and how it compares with state and federal limits. We strive to keep you informed about the quality of your water, and to provide a reliable and economical supply that meets all regulatory requirements.

WHERE DOES MY TAP WATER COME FROM?

SFSWUA tap water comes from 2 sources: groundwater and surface water.

Last year, SFSWUA obtained treated and disinfected groundwater through the City of Whittier from deep wells located in the Whittier Narrows area. In addition, SFSWUA receives treated groundwater from the Central Basin Water Quality Protection Program facility located in the Central Basin,


through the City of Whittier.

We also receive
Metropolitan
Water District of
Southern California's
(MWD) filtered and
disinfected surface
water, which is a
blend of water from
both the Colorado
River and the State
Water Project in
Northern California.

These water sources supply our service area shown on the adjacent map. The

quality of our treated groundwater and MWD's treated surface water supplies is presented in this report.

SOURCE WATER ASSESSMENT

Every five years, MWD is required by DDW to examine possible sources of drinking water contamination in its State Water Project and Colorado River source waters. The most recent watershed sanitary surveys of MWD's source water supplies from the Colorado River was updated in 2020 and the State Water Project was updated in 2021. Water from the Colorado River is considered to be most vulnerable to contamination from recreation, urban/stormwater runoff, increasing urbanization in the watershed, and wastewater. Water supplies from Northern California's State Water Project are most vulnerable to contamination from urban/stormwater runoff, wildlife, agriculture, recreation, and wastewater. USEPA also requires MWD to complete one Source Water Assessment (SWA) that utilizes information collected in the watershed sanitary surveys. MWD completed its SWA in December 2002. The SWA is used to evaluate the vulnerability of water sources to contamination and helps determine whether more protective measures are needed. A copy of the most recent summary of either Watershed Sanitary Survey or the SWA can be obtained by calling MWD at (800) CALL-MWD.

An assessment of the drinking water sources for the City of Whittier was completed in December 2002. The assessment concluded that the City of Whittier's sources are considered vulnerable to the following activities or facilities associated with contaminants detected in the water supply: research laboratory, known volatile organic chemical contamination plumes, and parking lots/mall. In addition, the sources are considered most vulnerable to the following activities or facilities not associated with contaminants detected in the water supply: research laboratories and parks. A copy of the complete assessment is available at the City of Whittier Water Division at 13230 East Penn Street, Whittier, California 90602. You may request a summary of the assessment to be sent to you by contacting the City of Whittier Customer Service Department at (562) 567-9530.

How Can I Participate in Decisions On Water Issues That Affect Me?

The public is welcome to attend City Council meetings on the first and third Tuesday of each month at 6 p.m. at City Hall, 11710 East Telegraph Road, Santa Fe Springs.

How Do I Contact My Water Agency If I Have Any Questions About Water Quality?

If you have specific questions about your tap water quality, please contact Frank Sanchez at (562) 941-5484 extension 3618 or send an e-mail to sfswater@santafesprings.gov.

Este informe contiene información muy importante sobre su agua potable. Para mas información ó traducción, favor de contactar a Frank Sanchez, al (562) 941-5484 o envíe un correo electrónico a sfswater@santafesprings.gov.

此份有關你的食水報告,內有重要資料和訊息,請找 他人為你翻譯及解釋清楚。

Please visit us on the web at: www.santafesprings.gov

Why Do I See So Much Coverage in the News About the Quality of Tap Water and Bottled Water?

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). You can also get more information on tap water by logging on to these helpful web sites:

https://www.epa.gov/ground-water-and-drinking-water (USEPA web site) or https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Fluoridation.html (DDW web site).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, including viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming;
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gasoline stations, urban stormwater runoff, agricultural application, and septic systems;
- Radioactive contaminants, that can be naturallyoccurring or be the result of oil and gas production and mining activities.

LEAD IN TAP WATER

Lead can cause serious health effects in people of all ages, especially pregnant people, infants (both formula-fed and breastfed), and young children. Lead in drinking water is primarily from materials and parts used in service lines and in home plumbing. SFSWUA is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in the plumbing in your home. Because lead levels may vary over time, lead exposure is possible even when your tap sampling results do not detect lead at one point in time. You can help protect yourself and your family by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk. Using a filter, certified by an American National Standards Institute accredited certifier to reduce lead, is effective in reducing lead exposures. Follow the instructions provided with the filter to ensure the filter is used properly. Use only cold water for drinking, cooking, and making baby formula. Boiling water does not remove lead from water. Before using tap water for drinking, cooking, or making baby formula, flush your pipes for several minutes. You can do this by running your tap, taking a shower, doing laundry or a load of dishes. If you have a lead service line or galvanized requiring replacement service line, you may need to flush your pipes for a longer period. If you are concerned about lead in your water and wish to have your water tested, contact SFSWUA at (562) 941-5484. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at https:// www.epa.gov/safewater/lead.

SFSWUA has completed a lead service line inventory to identify the presence of lead service line within the water system. For more information, please contact SFSWUA at (562) 941-5484 or visit: santafesprings.gov/2024waterqualityreport.

Infants and young children are typically more vulnerable to lead in drinking water than the general population. It is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. If you are concerned about elevated lead levels in your home's water, you may wish to have your water tested and/or flush your tap for 30 seconds to 2 minutes before using tap water. Additional information is available from the USEPA Safe Drinking Water Hotline (1-800-426-4791).

What is a Water Quality Coal?

In addition to mandatory water quality standards, USEPA and DDW have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The chart in this report includes three types of water quality goals:

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health.
 MCLGs are set by the USEPA.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Should I Take Additional Precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The USEPA/Centers for Disease Control guidelines on appropriate means to lessen the risk of infection of Cryptosporidium and other microbial contaminants are available from the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

How Do I Read the Water Quality Table?

The first column of the water quality table lists substances detected in your water. The next columns list the average concentration and range of concentrations found in your drinking water. Following are columns that list the MCL and PHG or MCLG, as appropriate. The last column describes the likely sources of these substances in drinking water.

To review the quality of your drinking water, compare the highest

concentration and the MCL. Check for substances greater than the MCL. Exceedance of a primary MCL does not usually constitute an immediate health threat. Rather, it requires testing the source water more frequently for a short duration. If test results show that the water continues to exceed the MCL, the water must be treated to remove the substance, or the source must be removed from service.

CITY OF SANTA FE SPRINGS WATER UTILITY AUTHORITY 2024 ANNUAL WATER QUALITY REPORT

Results are from the most recent testing performed in accordance with State and Federal drinking water regulation

CONSTITUENTS AND UNITS	SFSWUA GROUNDWATER		MWD SURFACE WATER		MCL	PHG OR	ACURAGA IN PRINCIPA WATER
	AVERAGE	RANGE	AVERAGE	RANGE	muL.	(MCLG)	SOURCES IN DRINKING WATER
NORGANIC CHEMICALS Tested in 2022, 2	023, and 2024					8	30 200 00 00 00 00 00 00 00 00 00 00 00 0
Aluminum (mg/l)	ND	ND	0.093	ND - 0.15	- 31	0.6	Residue from water treatment processes; erosion of natural deposit
Barlum (mg/l)	ND	ND	0.12	0.12	- 1	2	Erosion of natural deposits
Bromate (µq/l)	NR	NR	2	ND - 9.2	10	0.1	Byproduct of drinking water disinfection
Fluoride (mg/l) Naturally-occuring	0.23	0.2 - 0.28	NR	NR	2	1	Erosion of natural deposits
Fluoride (mg/l) Treatment-related	NR	NR.	0.7	0.3 - 0.8	2	1	Water additive for dental health
Hexavalent Chromlum (µg/l)	0.62	0.14 - 1.9	ND	ND	10	0.02	Erosion of natural deposits
Nitrate (mg/l as N)	3.2	2.3 - 4.3	ND	ND	10	10	Runoff and Leaching from fertilizer/septic tanks/sewage
							N .
ADIOLOGICALS Tested in 2018, 2020, 20	23, and 2024	13-10 N	1 10,000	ar verseus su	200000	or over	MACORORA NEW PROSECTION OF CONTROL AND
Gross Beta (pCl/I)	NR	NR.	ND	ND - 5	50	(0)	Decay of natural and man-made deposits
Uranium (nCM)	- 1	ND - 17	ND.	ND.3	20	0.43	Erneion of natural denocite

DISINFECTION BY-PRODUCTS (a)	AVERAGE	RANGE	MCL	MCLG	SOURCES IN DRINKING WATER
Trihalomethanes (µg/l) Tested quarterly	61	22 - 110	80		Byproduct of drinking water disinfection
Haloacetic Acids (µg/l) Tested quarterly	37	3.4 - 18	60	0.00	Byproduct of drinking water disinfection
Total Chiorine Residual (mg/l) Tested weekly	1.6	0.07 - 2.9	4.0 (b)	4.0 (c)	Disinfectant added for treatment
MICROBIOLOGICAL Tested weekly					
E. coll	0 (highest number of detections)		(d)	(0)	Human and animal fecal waste
AT-THE-TAP LEAD AND COPPER Teated in 2022	90th PERCENTILE	# OF SITES ABOVE THE ACTION LEVEL	ACTION LEVEL	PHG	SOURCES IN DRINKING WATER
Copper (mg/l)	0.44 (e)	0 out of 30 sites	1.3	0.3	Internal corrosion of household plumbing
Lead (µg/l)	ND (e)	3 out of 30 sites	15	0.2	Internal corrosion of household plumbing

INORGANIC CHEMICALS AND UNITS Tested in 2021, 2023, and 2024	SFSWUA GROUNDWATER		MWD SURFACE WATER		MCL	PHG	SOURCES IN DRINKING WATER	
	AVERAGE	RANGE	AVERAGE	RANGE	MCL	FIIG	SOUNCES IN DRINKING WATER	
Aluminum (µg/l) (f)	ND	ND	93	ND - 150	200	00 600	Residue from water treatment processes; erosion of natural di	
Chioride (mg/l)	94	69 - 120	110	96 - 120	500	-	Runoff/leaching from natural deposits	
Color (color units)	ND	ND	1	1	15	- 3-	Naturally-occurring organic materials	
Conductivity (umhos/cm)	820	720 - 910	1,000	910 - 1,100	1,600	- 62	Substances that form lons when in water	
Iron (µg/l)	21	ND - 89	ND	ND	300		Runoffleaching from natural deposits	
Manganese (µg/l)	<5	ND - 11	ND	ND	50		Runoff/leaching from natural deposits	
Sulfate (mg/l)	120	100 - 140	230	200 - 250	500	- 8-	Runoff/leaching from natural deposits	
Total Dissolved Solids (mg/l)	470	400 - 550	630	570 - 690	1,000	79	Runoffleaching from natural deposits	
Turbidity (NTU)	0.29	0.15 - 0.5	ND	ND	5		Runoff/leaching from natural deposits	

SECONDARY STANDARDS MONITORED	IN THE DISTRIBUTION S	YSTEM - FOR AESTHE	TIC PURPOSE	S	V
GENERAL PHYSICAL CONSTITUENTS	AVERAGE	RANGE	MCL	PHG	SOURCES IN DRINKING WATER
Color (color units)	હ	ND - 7.5	15	- 105	Naturally-occurring organic materials
Odor (threshold odor number)	1	1	3		Naturally-occurring organic materials
Turbidity (NTU) Tested monthly	0.26	0.1 - 0.51	5	1 2	Runoff/leaching from natural deposits

CONSTITUENTS AND UNITS Tested in 2020 and 2024	SFSWUA GR	SFSWUA GROUNDWATER MWD SI			MCL	PHG OR (MCLG)
	AVERAGE	RANGE	AVERAGE	RANGE	MOL	File OK (MCCe)
Lithium (µg/l)	ND	ND	42	35 - 45		37 8 37
Manganese (µg/l) (g)	0.89	0.67 - 1.1	2	2	SMCL = 50	-65
Perfluorobutane Sulfonic Acid (ng/l)	5.2	5.2	ND	ND	NL = 500	9.50
Perfluorobutanoic Acid (ng/l)	11	- 11	ND	ND		7.40
Perfluorooctane Sulfonic Acid (ng/l)	14	14	ND	ND	NL = 6.5	33 - 20
Perfluorooctanoic Acid (ng/l)	6.9	6.9	ND.	ND	NL = 5.1	7 2 8
Perfluoropentanoic Acid (ng/l)	3.9	3.9	ND	ND		

UNREGULATED CHEMICALS REQUIR	ING MONITORING IN THE D	STRIBUTION SYSTEM		
CONSTITUENTS AND UNITS Tested in 2020	AVERAGE	RANGE	NL	PHG OR (MCLG)
Haloacetic acids (HAA5) (µg/l)	3.7	3.3 - 4.7		25.
Haloacetic acids (HAA6Br) (µg/l)	4.3	3.9 - 5.3		3680
Haloacetic acids (HAA9) (µg/l)	7.4	6.6 - 9.1	(G	340

CONSTITUENTS AND UNITS	SFSWUA GROUNDWATER		MWD SURFACE WATER		MCL	PHG	ACUDACA IN DOMININA WATER
reated in 2022, 2023, and 2024	2023, and 2024 AVERAGE RANGE AVERAGE RANGE	SOURCES IN DRINKING WATER					
Alkalinity (mg/l as CaCO3)	170	150 - 200	120	110 - 130	12 1	100	Runoff/leaching from natural deposits
Calcium (mg/l)	78	71 - 83	68	59 - 76			Runoff/leaching from natural deposits
Magnesium (mg/l)	14	12 - 16	26	23 - 29	19-19		Runoff/leaching from natural deposits
Perfluorobutanesulfonic Acid (ng/l)	3.8	ND - 6.4	ND	ND	NL = 500	(-)41	Various industrial processes
Perfluorobutanoic Acid (ng/l)	9.7	ND - 22	ND	ND			Various industrial processes
Perfluorohexanoic Acid (ng/l)	<3	ND - 3.3	ND	ND		3*	Various industrial processes
Perfluorooctanesulfonic Acid (ng/l)	10	ND - 14	ND	ND	NL = 6.5	1	Various industrial processes
Perfluorooctanolc Acid (ng/l)	5.3	ND - 6.6	ND	ND	NL = 5.1	0.007	Various Industrial processes
Perfluoropentanoic Acid (ng/l)	<3	ND - 4.9	ND	ND			Various industrial processes
pH (standard unit)	7.7	7.5 - 8.3	8.2	8.2	- 12	39	Runoff/leaching from natural deposits
Sodium (mg/l)	67	55 - 82	110	93 - 120	100	7.5	Runoff/leaching from natural deposits
Total Hardness (mg/l as CaCO3)	250	230 - 270	270	240 - 300	76 0	7.	Runoff/leaching from natural deposits

METROPOLITAN WATER DISTRICT SURFACE WATER FILTRATION TREATMENT (WEYMOUTH PLANT)									
Turbidity Combined Filter Efficient Treatment Technique (TT) tested continuously	π	Turbidity Measurements	TT Violation?	Typical Source					
Highest single turbidity measurement	D.3 NTU	0.06	No	Runoff					
2) Percentage of samples less than or equal to 0.3 NTU	95%	100%	No	Runoff					

Turbidity is a measure of the cloudiness of the water, an indication of particulate matter, some of which might include harmful microorganisms Low turbidity in Metropolitan's treated water is a good indicator of effective filtration. Filtration is called a "breatment technique." A breatment echnique is a required process intended to reduce the level of contaminants in drinking water that are difficult and sometimes impossible to measure directiv.

FOOTNOTES

(a) Running annual average used to calculate MCL compilance (b) Maximum Residual Disinfectant Level (MRDL) (c) Maximum Residual Disinfectant Level Goal (MRDLG) (d) Rouline and repeat samples are total coliform-positive & e

(d) Routine and repeat samples are total coliform-positive & either E. coll-positive or system falls to take repeat samples following E. coll-positive routine sample or system falls to analyze total coliform-positive repeat sample for E. coll. (e) 90th percentile from the most recent sampling. (f) Aluminum has primary and secondary standards

(g) Manganese was included as part of the unregulated cher

ABBREVIATIONS

ugit = microgram per liter or parts-per-billion; mgit = miligram per liter or parts-per-milion, ngit = nanogram per liter or parts-per-billion; pCML = picoCurtes per liter;
NTU = nephelometric turbidity units; jumbolom = micromhos per centimeter; ND = not detected; MCL = Maximum Confaminant Level; (MCLG) = Federal MCL Goal;
PHG = California Public Health Goal; NR = not required to be tested; TT = treatment technique; NL = Notification Level; < = average is less than the detection limit for reporting

What Are Water Quality Standards?

In order to ensure that tap water is safe to drink, the USEPA and the DDW prescribe regulations that limit the amount of certain contaminants in water provided by public water systems.

The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that must provide the same protection for public health.

The chart in this report shows the following types of water quality standards:

- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial pathogens.
- Primary Drinking Water Standard: MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.
- ■Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Notification Level (NL): An advisory level which, if exceeded, requires the drinking water system to notify the governing body of the local agency in which users of the drinking water reside (i.e. City Council, County Board of Supervisors).